跳到内容

使用其他 LLM、Qdrant 为 Snowflake 生成 SQL

本 notebook 将介绍如何使用 vanna Python 包通过 AI (RAG + LLMs) 生成 SQL,包括连接数据库和训练。如果您尚未准备好在自己的数据库上进行训练,仍然可以使用示例 SQLite 数据库进行尝试。

在 Colab 中运行 在 GitHub 中打开

您想使用哪个 LLM?

您想将“训练”数据存储在哪里?

设置

%pip install 'vanna[qdrant,snowflake]'
from vanna.base import VannaBase
from vanna.qdrant import Qdrant_VectorStore
from qdrant_client import QdrantClient
class MyCustomLLM(VannaBase):
  def __init__(self, config=None):
    # Implement here
    pass

  def submit_prompt(self, prompt, **kwargs) -> str:
    # Implement here
    # See an example implementation here: https://github.com/vanna-ai/vanna/blob/main/src/vanna/mistral/mistral.py


class MyVanna(Qdrant_VectorStore, MyCustomLLM):
    def __init__(self, config=None):
        Qdrant_VectorStore.__init__(self, config=config)
        MyCustomLLM.__init__(self, config=config)

vn = MyVanna(config={'client': 'QdrantClient(...)'})

您想查询哪个数据库?

vn.connect_to_snowflake(
    account="myaccount",
    username="myusername",
    password="mypassword",
    database="mydatabase",
    role="myrole",
)

训练

您只需训练一次。除非您想添加更多训练数据,否则不要再次训练。

# The information schema query may need some tweaking depending on your database. This is a good starting point.
df_information_schema = vn.run_sql("SELECT * FROM INFORMATION_SCHEMA.COLUMNS")

# This will break up the information schema into bite-sized chunks that can be referenced by the LLM
plan = vn.get_training_plan_generic(df_information_schema)
plan

# If you like the plan, then uncomment this and run it to train
# vn.train(plan=plan)
# The following are methods for adding training data. Make sure you modify the examples to match your database.

# DDL statements are powerful because they specify table names, colume names, types, and potentially relationships
vn.train(ddl="""
    CREATE TABLE IF NOT EXISTS my-table (
        id INT PRIMARY KEY,
        name VARCHAR(100),
        age INT
    )
""")

# Sometimes you may want to add documentation about your business terminology or definitions.
vn.train(documentation="Our business defines OTIF score as the percentage of orders that are delivered on time and in full")

# You can also add SQL queries to your training data. This is useful if you have some queries already laying around. You can just copy and paste those from your editor to begin generating new SQL.
vn.train(sql="SELECT * FROM my-table WHERE name = 'John Doe'")
# At any time you can inspect what training data the package is able to reference
training_data = vn.get_training_data()
training_data
# You can remove training data if there's obsolete/incorrect information. 
vn.remove_training_data(id='1-ddl')

```## Asking the AI
Whenever you ask a new question, it will find the 10 most relevant pieces of training data and use it as part of the LLM prompt to generate the SQL.
```python
vn.ask(question=...)

启动用户界面

vanna-flask

from vanna.flask import VannaFlaskApp
app = VannaFlaskApp(vn)
app.run()

Vanna Logo Vanna.AI

只需提问即可从您的数据库中获取见解的最快方式